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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. In particular, solutions found from a graphic display
calculator should be supported by suitable working. For example, if graphs are used to find a solution,
you should sketch these as part of your answer. Where an answer is incorrect, some marks may be
given for a correct method, provided this is shown by written working. You are therefore advised to show

all working.

Section A
Answer all questions in the boxes provided. Working may be continued below the lines if necessary.
1. [Maximum mark: 4]

The region R is enclosed by the graph of y = e”‘z, the x-axis and the lines x=—1 and x=1.
Find the volume of the solid of revolution that is formed when R is rotated through 21 about

the x-axis.
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[Maximum mark: 4]

The finishing times in a marathon race follow a normal distribution with mean 210 minutes
and standard deviation 22 minutes.

(@) Find the probability that a runner finishes the race in under three hours. [2]
The fastest 90 % of the finishers receive a certificate.

(b) Find the time, below which a competitor has to complete the race, in order to gain
a certificate. [2]
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[Maximum mark: 5]

A mosaic is going to be created by randomly selecting 1000 small tiles, each of which is
either black or white. The probability that a tile is white is 0.1. Let the random variable W be
the number of white tiles.

(a) State the distribution of W, including the values of any parameters. [2]
(b)  Write down the mean of . [1]
(c) Find P(W>89). [2]
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[Maximum mark: 6]

Atriangle ABC has 4 =50°, AB=7cm and BC = 6cm. Find the area of the triangle given
that it is smaller than 10cm’.
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[Maximum mark: 5]

A bicycle inner tube can be considered as a joined up cylinder of fixed length 200 cm

and radius rcm. The radius r increases as the inner tube is pumped up. Air is being
pumped into the inner tube so that the volume of air in the tube increases at a constant rate
of 30cm’s ™. Find the rate at which the radius of the inner tube is increasing when »=2cm.
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[Maximum mark: 4]

Afunction f is defined by f(x)=x’+¢'+ 1, xeR. By considering f'(x) determine
whether f is a one-to-one or a many-to-one function.

L
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[Maximum mark: 7]

The random variable X follows a Poisson distribution with mean m # 0.
(a) Giventhat 2P(X=4)=P(X=5), show that m =10. [3]

(b) Given that X< 11, find the probability that X =6. [4]
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8. [Maximum mark: 8]

2 4
Letv={3|and w=| 4
5 10

(a) Find the value of A for v and w to be parallel. [2]

(b) Find the value of A for v and w to be perpendicular. [2]

(c) Find the two values of A if the angle between v and w is 10°. [4]

Turn over
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[Maximum mark: 7]

. . y In(x+ .
Find the equation of the normal to the curve y = ¢ cosxin(x+e) at the point where x=0.

(x17 +1)5

In your answer give the value of the gradient, of the normal, to three decimal places.
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[Maximum mark: 10]

Afunction f is definedby f(x)=(x+1)(x—1)(x—5),xeR.
(a) Find the values of x for which f(x) <| f(x)|.

A function g is defined by g(x) =x’+x -6, xeR.

(b)  Find the values of x for which g (x) < .
g (x)

[3]

[7]
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Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.
1. [Maximum mark: 20]

The probability density function of a continuous random variable X is given by

0,x<0
sinx
—,0<x<n
S (x)= 4
a(x—m), t<x<2m
0,2n<x
(a) Sketch the graph of y =f(x). [2]
(b) Find P(X< ). [2]
1
(c) Show that a=—. [3]
T
(d)  Write down the median of X. [1
(e) Calculate the mean of X. [3]
(f)  Calculate the variance of X. [3]
(@ Findp[E<x<3F
2 T 2)

(2]

(h) Given that gs X< 3771 find the probability that 1 < X < 2n

[4]

§ [T
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Do not write solutions on this page.
12. [Maximum mark: 19]
(@) (i) Use the binomial theorem to expand (cos 0 + isin 6)’.
(i)  Hence use De Moivre’s theorem to prove
sin50 = 5cos’ @sin 6 — 10cos’ Osin’ O + sin’ 6.
(iii) State a similar expression for cos56 in terms of cos 6 and sin 6. [6]

Let z =r(cos a + isin &), where « is measured in degrees, be the solution of z>— 1 =0 which
has the smallest positive argument.

(b) Find the value of r and the value of «. [4]
(c) Using (a) (i) and your answer from (b) show that 16sin*a — 20sin* o+ 5 = 0. [4]
(d) Hence express sin72° in the form —“a-j\/; where a,b,c,deZ. [5]
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Do not write solutions on this page.

13.

[Maximum mark: 21]

Richard, a marine soldier, steps out of a stationary helicopter, 1000 m above the ground,
attime = 0. Let his height, in metres, above the ground be given by s(¢). For the first
10 seconds his velocity, v(f)ms ', is given by v(f) =—10¢.
(@) (i) Find his acceleration a(¢) for t < 10.

(i)  Calculate v(10).

(iii)  Show that s(10) =500.

At ¢ =10 his parachute opens and his acceleration a(¢) is subsequently given by
a()=-10-5v,t>10.

de 1 dr
(b) Given that — =——, write down — in terms of v.
dv dv dv

ds

You are told that Richard’s acceleration, a(f) =—10 —5v, is always positive, for 1> 10.

(c) Henceshowthatt:10+lln£ %8 j
5 \2-v

(d) Hence find an expression for the velocity, v, for £>10.
(e) Find an expression for his height, s, above the ground for > 10.

(f)  Find the value of t when Richard lands on the ground.

[6]

(1]

[5]

[2]
[5]
[2]
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